C Quintic Spline Interpolation Over Tetrahedral Partitions
نویسندگان
چکیده
We discuss the implementation of a C quintic superspline method for interpolating scattered data in IR based on a modification of Alfeld’s generalization of the Clough-Tocher scheme described by Lai and LeMéhauté [4]. The method has been implemented in MATLAB, and we test for the accuracy of reproduction on a basis of quintic polynomials. We present numerical evidences that when the partition is refined, the spline interpolant converges to the function to be approximated. §
منابع مشابه
C 1 Quintic Spline Interpolation over Tetrahedral Partitions
We use C 1 quintic superspline functions to interpolate any given scattered data. The space of C 1 quintic superspline functions is introduced in Lai and LeMehaute'99] and is an improvement of the Alfeld scheme of 3D scattered data interpolation. We have implemented the spline space in MATLAB and tested for the accuracy of reproduction of all quintic polynomials. We present some numerical evide...
متن کاملLocal Lagrange Interpolation With Cubic C Splines on Tetrahedral Partitions
We describe an algorithm for constructing a Lagrange interpolation pair based on C cubic splines defined on tetrahedral partitions. In particular, given a set of points V ∈ IR, we construct a set P containing V and a spline space S 3 (△) based on a tetrahedral partition △ whose set of vertices include V such that interpolation at the points of P is well-defined and unique. Earlier results are e...
متن کاملNear minimally normed spline quasi-interpolants on uniform partitions
Spline quasi-interpolants are local approximating operators for functions or discrete data. We consider the construction of discrete and integral spline quasi-interpolants on uniform partitions of the real line having small infinite norms. We call them near minimally normed quasi-interpolants: they are exact on polynomial spaces and minimize a simple upper bound of their infinite norms. We give...
متن کاملLocal lagrange interpolation with cubic C1 splines on tetrahedral partitions
We describe an algorithm for constructing a Lagrange interpolation pair based onC1 cubic splines defined on tetrahedral partitions. In particular, given a set of points V ∈ R3, we construct a set P containing V and a spline space S3( ) based on a tetrahedral partition whose set of vertices include V such that interpolation at the points of P is well-defined and unique. Earlier results are exten...
متن کامل